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Abstract. We analyse charge motion in geometries composed solely of interconnect- 
ing ‘diamonds’. Since a diamond is composed of two edgesharing triangles, these 
geometries.are topologically frustrated. The motion of a single particle across atoms 
whichhave restricted valence leads to a type of par-gnetism with only short range 
correlations in these geometris. When two particles meet in a diamond their be- 
haviour is more bosonic than fermionk, which leads to a form of Bcs pairing theory. 
The attraction can be interpreted as the pair locally unfrustrating the geometry$ and 
aresulting local regaiming of lost kinetic energy leads to the attraction. 

1. Introduction 

The discovery of high temperature superconductivity [l] has led to a theoretical chal- 
lenge. It is widely believed that phonons cannot be the sole source of the effect, and 
so the theoretical requirement is a new mechanism which promotes superconductivity. 
The basic idea of exchanging bosons, which is a t  the core of the standard explanation 
for phonon mediated superconductivity, has led to an examination of the exchange of 
magnons [2] as the cause. The existence of an antiferromagnetic phase in the near 
vicinity of the superconducting phase is usual in the experimental systems and this 
‘has fuelled the theoretical effort. Unfortunately there is still no theoretical evidence 
that this mechanism is possible, let alone plausible. In this article we will address a 
completely different possibility: that topological considerations can lead to supercon- 
ductivity. 

The basic idea is elementary, but requires some knowledge of the effects of topology 
on charge-carrier motion in strong-coupling systems. The first real attempt to study 
charge motion in strong-coupling systems was performed by Nagaoka [3] who studied 
the motion of one charge-carrier in an infinitely strong-coupling Bubbard model. In 
unfrustrated lattices ferromagnetism is preferred, since the motion of a particle can 
be made coherent, with all possible paths that the particle can travel being simultane- 
ously traversed in phase. Motion in a topologically frustrated lattice yields a surprise 
however. If the hopping matrix elements for charge-carrier motion are negative, then 
all hops can be chosen in phase, leading again to ferromagnetism, but if the matrix 
elements are positive, then not all hops can be necessarily chosen in phase and the 
ground state is not usually ferromagnetic. 

Although i t  is fairly easy to show that charge motion in frustrated system does not 
promote ferromagnetism, it is not so easy to ascertain the magnetic correlations that 
charge motion does promote. Some simple, but rather contrived, geometries have been 
solved; the ‘sawtooth’ geometry [4] and the ‘diamond’ geometries [4] of interest in this 
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article. Interestingly, the phase which is stabilized in these systems is a paramagnetic 
phase with only very short range spin correlations, Other geometries of interest which 
have been studied but which have not been solved are the triangular lattice [5] and 
a limit of the standard twc-band model of perovskite superconductivity [SI. Both 
geometries are readily shown to be frustrated and both models exhibit a short range 
paramagnetic phase although the triangular lattice ground state is controversial [7]. 

The point, which is crucial to the present article and which is not immediately 
obvious, is that in most frustrated systems, even when the system is driven param- 
agnetic, the charge motion is sfill not coherent for all paths. There are loops around 
which the particle travels out of phase, leading to a cancelling phase superposition 
and a corresponding loss in kinetic energy. The question being investigated in this 
article is: although a single particle loses this kinetic energy when alone, is it possible 
for this energy to be regained when two particles are nearby? The answer appears 
to be yes and this energy gain yields an effective attraction between particles. The 
simple picture is that when the two particles are brought together, one of the particles 
blocks an incoherent path of the other, and then the first particle can avoid the phase 
cancellation and recoup its losses. This article is an analysis of a concrete example of 
this idea. 

The picture so far presented is too naive, since blocbing of motion is clearly repul- 
sive, which is the opposite physical effect to our aim. The resolution to this argument 
can be found from an understanding of the standard Cooper pairing theory of super- 
conductivity [8]. In BCS theory one starts out with a non-interacting free-electron gas 
and then one includes a small attraction between the electrons. Electrons are fermions, 
and fermions repel each other: Pauli exclusion. In order for the theory to apply, we 
require an additional attraction given a hard-core repulsion between particles. In our 
model, the charge-carriers behave like spinless hard-core bosons or spinless fermions, 
and the topological effect yields a weak additional attraction. 

There is a fair amount now known about the strong-coupling limit of the Hub- 
bard model on the diamond geometries central to this article, and we will brieAy 
outline the behaviour. At half filling we find a Mott insulator with a very large gap to 
charged excitations. Each atom has a localized electron which yields a residual spin 
$ degree of freedom. Virtual transitions into charged states lead to a weak antiferro- 
magnetic Heisenberg superexchange interaction. The diamond geometries are some of 
the few connectivities which yield an exact solution to the quantum mechanical spin 
&j Heisenberg model. The solution finds as many diamonds as possible in short range 
Nkel configurations with all the residual atoms, which come in pairs and lie on the 
short diagonals, pairing up into nearest neighbour singlets [9]. There is no long range 
magnetic order and in fact all the spin correlations are restricted to lie within the 
confines of individual diamonds; the correlations between spins on different diamonds 
vanish. This state is an example of the type of short range paramagnetic state central 
to the study of topologically frustrated geometries. 

When charge is doped into the system and analysed in the t-J model, the resulting 
behaviour depends on the sign of the relevant hopping matrix element and on the sign 
of the charge of the carriers. If the hopping matrix element for electrons is negative, 
then extra electrons prefer the pairs of spins on the short diagonals of diamonds to 
be in local triplets, whereas extra holes prefer the pairs to  be in local singlets. If the 
hopping matrix elements are positive, then we find the opposite behaviour [4]. Since 
the Heisenberg interaction promotes a mixture of singlet and triplet pairs, there is 
always a competition. 
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In this article we will assume that the electron hopping matrix elements are neg- 
ative. When electrons are doped into the system, they locally drive some of the 
Heisenberg singlets into triplet configurations, forming a spin polaron. The saturated 
ferromagnetism to be expected from Nagaoka's theorem [3] is very weak and unlikely 
to be relevant in anything other than the extreme strong-coupling limit, a rarity in 
nature. When holes are doped into the system they locally drive some of the Heisen- 
berg triplets into singlet configurations forming a second type of spin polaron. In this 
article we will be concerned with this limit, and further we will be assuming that the 
concentration of charge carriers is high enough that all the remnants of the Heisenberg 
ground state are eradicated and that all the short diagonal spin pairs have been driven 
into singlets. 

We will study small concentrations of holes doped into geometries composed solely 
of interconnecting diamonds which have strong-coupling spin $ atoms at their vertices. 
In section 2 we will develop the basic physical phenomena at work in the system, 
reminding the reader of the singleparticle solution to the relevant limit [4]. In section 3 
we will show how to describe the system approximately with spinless hard-core bosons, 
and then we will show how to describe the system more precisely by spinless fermions. 
Both descriptions lead to a simple BCS pairing theory. In section 4 we conclude. 

Figure 1. A single diamond and a linear chain of diamonds. All the bondn are 
asumed to be equal for most of the arlicle. The long diagonal spins are not connected 
directly. 

2. The physical phenomena 

In figure 1 we depict a single diamond and a linear chaim of diamonds. In order to 
understand how many particles behave in our diamond geometries, it is crucial to 
appreciate the behaviour of various numbers of charge carriers in a single diamond. 
We will now proceed with a detailed description of the solution to the t-model in one 
diamond. The t-model is 

(1) x = -t (1 - c~&ia)cf,ci,,(l - ci,aci,a) t 
( i i ' )o  

where t is the hopping matrix element, (ii') the nearest neighbours on the chosen 
geometry and cl, is an electron creation operator which creates a spin electron on 
site i with spin U .  This Hamiltonian hops electrons from site to neighbouring site, 
provided that the site which is hopped to is empty. 



6390 M W Long 

2.f. One hole in one diamond 

We are predominately interested in doping away from half filled, and so the undoped 
reference state finds each atom with one electron and a spin $ degree of freedom. 
A single charge carrier doped into the system is a mobile vacant site, but the spin 
degrees of freedom on the singly occupied sites are relevant and so even solving for 
the motion of one charge carrier is a truly many-body problem. One charge carrier 
on a single diamond corresponds to three electrons in a vacant lattice and so we are 
simultaneously solving a three-electron problem, 

There are three different types of solution: First when the spin background has 
saturated ferromagnetism, second when the short diagonal is a triplet but the solution 
has total spin f and third when the short diagonal is a singlet and the solution is 
therefore also total spin f. 

When the spin background has saturated ferromagnetism, the system becomes 
effectively non-interacting, since the constraint that no atom is doubly occupied is 
achieved by Pauli exclusion. For this situation we can put the hole into a non-bonding 
configuration on the short diagonal which yields an energy of -1. The hole cannot 
move from this non-bonding configuration and since there are states a t  lower energy we 
will henceforth ignore this possibility. There are three other eigenstates at energies zero 
and (1 =k J17)1/2 Y 2.56161. and -1.56161. The first and most important observation 
is that these energies are not symmetric when the sign of the hopping matrix element 
is reversed. The highest energy involves coherent motion with all the paths being 
traversed in phase, and the hole achieving the maximum permissable kinetic energy. 
However, the lowest energy finds the particle losing energy when it hops from one of 
the short diagonal sites to the other. Although hopping from one long diagonal site 
to the other is always in phase, hopping around one of the triangles is out of phase 
and leads to the observed loss in kinetic energy from the unfrustrated bound. Some of 
this energy can be recouped by driving the three spins from this spin configuration 
into a spin f configuration. 

When the total spin of the system is f ,  and the short diagonal pair is in a spin 
triplet, there are four eigenstates a t  energies ( 1  & J5)1 /2  - 1.61801 and -0.618Ot and 
(1 i J13)t/2 Y 2.30281 and -1.3028t. This configuration clearly does worse than the 
case of saturated ferromagnetism and corresponds to the standard result of Nagaoka’s 
theorem that ferromagnetism usually yields the ground state. The non-bonding orbital 
achieves a small quantity of kinetic energy from hybridization with the previous zero 
energy antisymmetric eigenstate while the previously strongly hybridizing states lose 
some of their hybridization. For these states motion from one short diagonal atom 
to the other is still out of phase, but now the motion between long diagonal sites is 
sometimes also out of phase. 

The case of most interest to us is when the short diagonal pair are in a relative spin 
singlet. Once again there are four states, but now their energies are a t  (-IF J5)1/2 Y 

-1.61801 and 0.6180t and f-1 J13)1/2 Y -2.3028t and 1.30281. These results 
correspond directly to the previous case, bu t  with the one change that motion from 
one short diagonal site to the other has now become in phase, and so motion around 
each individual triangle has become coherent. The crucial consideration for the present 
article is that, although this configuration yields the ground state, the ground state 
kinetic energy is not the unfrustrated bound of (-1 - J17)t/2 N -2.56161; some 
kinetic energy has been intrinsically lost. It is important to physically understand this 
loss. 
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The motion of the charge carrier on the diamond can be understood by first mn- 
sidering motion around a triangle. Hole motion on a triangle does achieve the unfrus- 
trated limit of -2t, when the other two spins are in a relative singlet. When the other 
two spins are in a triplet, however, the best that the hole can achieve is only -t. For 
the triplet case motion around the triangle involves phase cancellation. The charge 
carrier hops between only two atoms gaining the hybridization energy from this single 
bond. 

The ground state for hole motion on the diamond is symmetric. When the hole is 
on either of the two long diagonal sites, the short diagonal pair is in a relative singlet 
promoting unfrustrated motion around the triangle on which the hole is situated. 
When the hole is on a short diagonal site, however, it is not possible to  make both of 
the pairs of spins which make up ihe two triangles simultaneously singlet. The motion 
around both of the two triangles cannot therefore be simultaneously unfrustrated. The 
highest simultaneous probability of finding the two bonds singlet is achieved in the 
ground state to the Heisenberg model for three atoms connected in a line, and this 
is precisely the state found for the three spins in the ground state. The probability 
that any one of the two bonds is singlet is three-quarters and when this occurs the 
particle hops to the relevant long diagonal site in phase. The residual probability of 
onequarter that the relevant bond is in a triplet leads to *he cancelling superposition 
and the unavoidable loss in kinetic energy observed in the ground state. 

2.2. Two holes in one diamond 
There are two basic cases: (1) when the two remaining spins are in a triplet configu- 
ration; and (2) when the two remaining spins are in a relative singlet. 

The triplet case is straightforward and is once again a completely non-interacting 
problem, since double occupancy is avoided using Pauli exclusion. The:e are six 
eigenstates in all, but if we eliminate the non-bonding state, since the relevant hole 
is immobile, we are left with three eigenstates. The lowest energy state involves the 
non-bonding orbital and resides at energy (-1 - J13)t/2 N -2.30281 whereas the 
lowest energy state subject to the constraint that both particles are mobile resides at 
energy (1 - J13)t /2  % -1.3028t. An interesting fact pertaining to this second state, 
is that it is not possible for both particles to simultaneously sit on the short diagonal. 
If two particles were to sit on the short diagonal, then both orbitals would have to he 
used and so one particle would be in the non-bonding orbital and would therefore be 
immobile. This fact will become very important in our modelling of the next section. 

The singlet case is much more interesting and yields the ground state. Again 
there are six eigenstates, but now the problem is no  longer a single-particle problem. 
Interestingly there is an analogous problem with identical behaviour: that of spinless 
hard-core bosons. The possibility of finding bosonic charge carriers has been suggested 
before in quantumparamagnetics 1141, and our model yields a concrete example of this 
idea. When the two holes are exchanged, the two spins are necessarily simultaneously 
interchanged and, since the two spins are in a singlet, the fermionic sign cancels 
with the sign due to the antisymmetric spin singlet wavefunction leading to a bosonic 
plus sign. The ground state energy is (-1 - J33)t/2 E -3.37231 and yields the 
unfrustrated bound for spinless bosons, very much lower than the unfrustrated bound 
of (-1 - J17)t/2 -N -2.56161 for spinless fermions. This observation leads to a second 
possible explanation for superconductivity in this type of strong-coupling system: the 
charge carriers in these systems are hard-core, since each site can only be singly 
occupied, but the spin system is not irrelevant and nodes in the spin wavefunction can 
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conspire with the fermionic antisymmetry of electrons to produce hard-core bosonic 
charge carriers. We will develop this idea further in the next section, but first we must 
point out a useful fact which is restricted to the case of diamond geometries which 
assists a comparison between hard-core bosons and fermions. 

One of the major problems met when trying to unravel many-body physica is 
that the only simple solutions available for comparison are non-interacting solutions. 
Although we have non-interacting fermions as a solution, the corresponding state for 
bosons is the non-interacting condensate, and there is no clear solution for the case 
of hard-core bosons. Although one believes that one achieves a condensate for hard- 
core bosons, this is by no means a foregone conclusion. Fortunately for the present 
case of diamond geometries, there is an important fact which allows one to develop 
a type of weak-coupling BCS-like pairing solution for the case of hard-core bosons. 
The observation which yields the insight comes from a comparison of the mobile 
two-fermion solution with the two-boson solution. There is a direct correspondence 
between the two sets of states which compose the two bases, together with some 
extra states which are only applicable to the bosonic problem; the states where both 
charge carriers reside on the short diagonal. Restricted to the states relevant to both 
problems, the hopping mairis elemenls w e  identical, and so if the special states are 
omitted the two descriptions agree. This fact allows us to describe the spinless hard- 
core bosonic problem as a spinless fermion problem combined with some extra degrees 
of freedom not present in the fermionic problem. We will develop this idea further in 
the next section. 

2.3. One hole and many diamonds 

The main reason for considering the isolated diamond in such detail is because when 
many diamonds are connected together the behaviour is dominated by the solution to 
the isolated diamond. If we connect all the diamonds together only at long diagonal 
sites, then holes can only move from one diamond to another by sitting on the long 
diagonal site between them. For one hole the ground state of the isolated diamond 
was achieved by states for which the short diagonal pair were in a singlet when the 
hole was on a long diagonal site. This fact survives the transition to many diamonds, 
and the ground state is achieved in the subspace where all  the diamonds have singlet 
short diagonal pairs. There are several degrees of freedom which must be described 
at the single-particle level: Each diamond includes two internal degrees of freedom for 
the spin configurations when the hole resides on one of the short diagonal sites; there 
are the states when the holes reside on the long diagonal sites; and finally there are 
the spin correlations between the spins on the long diagonal sites to consider. 

The best way to construct the ground state is by applying the Hamiltonian to many 
different states and finding out which states are connected to which other states. If 
all the short diagonals are in spin singlets, then we immediately discover that this 
property is conserved. The spin degeneracy of the long diagonal sites is lifted in 
precisely the same way that it is in the Nagaoka problem. As the hole passes from one 
long diagonal site to another, so it transfers the extra spin in the relevant diamond 
in the reverse direction. Nagaoka showed that the degeneracy is broken by loops, 
and that for bipartite loops ferromagnetism is stabilized. For the present problem the 
solution is identical, the infinite chain has no loops and so the degeneracy remains. For 
two- and three-dimensional lattices of diamonds we usually expect the long diagonal 
sites to yield saturated ferromagnetism. 
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The internal degrees of freedom may be understood from applications of the Hamil- 
tonian. If the hole starts on a long diagonal site, then it resides in a triangle with a 
singlet. An application of the Hamiltonian pushes the hole onto a short diagonal site, 
but it arrives in a bonding orbital and the spin of the triangle remains zero. There are 
two long diagonal sites in each diamond and the states produced by hopping the hole 
from each one are distinct and yield the internal degrees of freedom. If the geometry is 
such that all the long diagonal sites are equivalent, then the ground state is achieved 
by an equal amplitude superposition of the two states, and this is precisely the three- 
atom-in-a-line N&I state which yielded the ground state of the isolated diamond. For 
this case the ground state can be deduced from a subsidiary model without the spin 
degrees of freedom. If we consider a single charge carrier on a vacant diamond geome- 
try identical in form to the original but with the hopping matrix elements all negative 
and the elements connecting the long and short diagonals reduced to -J3t/2 to take 
account of the three-quarters probability of hopping, then the ground state energies 
are the same. The excitations are slightly different, however, since the second internal 
degree of freedom can come into play. 

The single hole motion on a bipartite connectivity of diamonds is soluble in terms 
of an effective single-particle problem which has the same connectivity as the long 
diagonal sites together with three degrees of freedom per diamond. We denote short 
diagonal bonding combinations by j and long diagonal sites by j u  where U = f labels 
the two atoms in that diamond. We use operators aio for holes on long diagonal 
sites, dj to  create the symmetric Ndel spin ground state with the hole in the short 
diagonal bonding combination of the isolated diamond and e: to create the lowest 
lying antisymmetric state with the hole in the short diagonal bonding combination for 
the isolated diamond. The single-particle solution to any geometry of diamonds with 
all long diagonal spins parallel is then obtained by solving 

for the relevant diamond geometry where the sum is over the internal bonds in a di- 
amond and u is positive when hopping from one long diagonal site into the diamond 
and negative when hopping from the other long diagonal site. The description is over- 
complete with the same long diagonal site being described by a;,, for any j connected 
to the site. All these different operators must be identified. 

This result was previously obtained in a different form for the one-dimensional 
chain of diamonds [4]. The problem being tackled in this article is how to deduce the 
equivalent model applicable at the two-particle level. 

2.4. Two holes many diamonds 

It is at this point that we come across some truly new phenomena. In a study of 
the strong-coupling Hubbard model, the motion of two boles has  proven intrinsically 
very difficult to tackle theoretically. Although Nagaoka's theorem demonstrates that  
saturated ferromagnetism is stabilized by one hole in a bipartite lattice, the two hole 
problem is much more difficult. In the near vicinity of the hole there are strong 
ferromagnetic correlations, but it seems that between the two charge carriers there is 
a slow spiralling of the spins. This slow spiralling costs each individual charge carrier 
very little, but enables the two to meet in a relative singlet and this saves energy. A 
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semi-classical description of this spin spiralling exists in the literature [15] and various 
quantum mechanical ideas have also been presented [SI. We have nothing further to  
add on this topic, but will address the rather different problem of two holes on the 
linear chain of diamonds. The analogous problem for the Aubbard model is dull with 
the spin degeneracies remaining unbroken, but for the diamond geometries there is 
a new phenomenon at work, originating from the small probabilities when the two 
holes are in the same diamond. The degeneracy of the long diagonal spin system is 
weakly broken and a state very similar to the Beisenberg ground state of the chain is 
stabilized. 

Once again the way to find out the possible phenomena is to  apply the Hamiltonian 
and to find out which states are connected to which other states. Clearly when the 
particles are not in the same diamond, the single-particle ideas are directly relevant, 
and so we need only consider the states produced when the holes come together. 

Usually when two holes come together they arrive in a diamond where the two 
remaining spins are in a relative singlet. This singlet is usually the singlet which 
w a s  on the short diagonal. There is one configuration that can be reached where the 
configuration is not necessarily a singlet: this is where one hole follows the other into 
the diamond. For the linear chain Hubbard model with nearest-neighbour hopping 
and infinite Aubbard repulsion, a hole cannot hop to the next site before another hole 
has left, but for our geometry a hole can hop to a long diagonal site of a diamond 
while there is a hole on a short diagonal site of the same diamond. When the second 
hole follows the first hole into the diamond, then the two holes and a long diagonal 
spin are simultaneously in a diamond. These configurations lead to the possibility of 
finding the two holes in a triplet diamond, but there is a further consideration. If 
once the second hole has arrived in the diamond the first hole moves onward, then we 
can reach a spin configuration where two long diagonal spins are in the same triangle 
as the second hole. It is this eventuality which breaks the degeneracy and stabilizes 
short range singlet correlations amongst the long diagonal spins. 

Although this effect constitutes a new and interesting phenomenon, in  the present 
limit it is very weak. The effect dominates in the limit of a small concentration of 
electrons in an otherwise vacant lattice and constitutes the phenomenon which leads 
to Kanamori paramagnetism in this limit [IO]. 

3. Many-body descriptions 

In the previous section we established the states and associated spin correlations which 
are relevant at low dopings of holes into a half-filled diamond geometry. Although 
the state3 relevant to one hole moving around are easy to enumerate, leading to the 
erective description of equation (2), when two holes or more are present they can 
produce an alarmingly large number of different possible spin configurations for the 
spin background. In this section we wish to derive some approximate many-body 
descriptions for some of the states that two holes generate and to show that these 
descriptions are unstable with respect to fernionic pairing. The basic idea is to select 
a set of states with fized spin configurations and then to achieve a description where 
the only relevant degrees of freedom are those of the holes. Equation (2) is an example 
of such a description since all the original spin labels have gone and we are left with two 
types of spinless mobile particles. The problem is to extend this type of description to 
include the two-particle interactions in a way which consistently includes states which 
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are relevant to the original problem and connects them with the same matrix elements 
as the original problem. 

S.1. Hard-con bosons 

In this section we address the problem naively electing to use an approximate repre- 
sentation suggested by the single diamond results. This analysis gives both a simple 
concrete example of how the many-body aspects might behave and furnishes an inter- 
esting way of studying hard-core boson problems. 

The first important observation to make is that the holes are truly hard c o n :  it 
is not possible to put two charge carriers on the same atom. Although there are two 
degrees of freedom corresponding to the internal spin configurations in the single- 
particle description of equation (2), there is no sense in which these particles may he 
considered ‘non-interacting’, The difficulty associated with deciding the relationship 
between the two relevant states lead us to consider an approximate description with 
only one hard-core object. 

The states we initially consider correspond to the d,’ operator. If we break up this 
operator into two halves corresponding to the two atoms on the short diagonal, then 
we can consider the model: 

where bf creates a bole on one of the short diagonal sites, bf,  creates a hole on one 
of the long diagonal sites which are indexed by U = f and (U’) correspond to pairs 
of short diagonal sites. Notice that we are overcomplete in our description, with each 
long diagonal site having an operator defined for each connected diamond, which must 
all be identified with each other. A single hole in a lattice where all the Ion diagonal 

concentrations we might expect this to remain approximately true, and at the single- 
particle level the 6t constitute an exact description of only these degrees of freedom. 
The crucial step is deciding on the statistics of the operators and their interactions at 
the two-particle level. 

If we assume that the bt are spinless hard-core bosons, then the description of 
equation (3) describes fairly well both the single-particle motion restricted to d,’ par- 
ticles and the states where two holes arrive in the same diamond with a singlet pair of 
spins. The spin configurations where two holes arrive with a triplet pair of spins are 
ignored and further, situations with three holes in the same diamond are described 
erroneously. The surprising fact is that the matrix elements between the relevant 
states are very similar in the two descriptions; with the small probability that the two 
holes arrive in a triplet diamond exactly compensating for the loss in kinetic energy 
from motion around the triplet triangles for a single particle. The only complication is 
when holes reside on short diagonals on neighbouring diamonds, a situation for which 
the best local spin configuration is non-trivial and a small quantity of energy is lost in 
the resulting matrix elements. We will ignore this minor complication and treat the 
simpler model to start. 

The next natural step is to say that since we now have a hard-core boson problem, 
the ground state will involve a condensate and the system will be superconducting. 
This argument is not beyond reproach, and the present geometry is simple enough to 
allow a rather better argument to be employed. 

atoms are equivalent is described by pure d] and operators and no ej. f At low 
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The observation which proves useful is the comparison between fermions and hard- 
core bosons on an isolated diamond. There is a one-to-one correspondence between 
the bonding states in the fermionic description resulting from equation (3) and the 
bosonic states where two bosons are not allowed to simultaneously sit on a short 
diagonal. Since the particles can only be exchanged within the confines of a single 
diamond, there is no sign inconsistency in associating the two types of states. This idea 
then results in a description of the hard-core boson problem in terms of non-interacting 
fermions together with some hybridization into some other degrees of freedom: 

H = - - - t ~ ( b f b j , + b ~ , b f ) - t ~ b ~ b ~ , - -  J3 J 3 t z ~ ( b f b j t o f j  + f f b j w b l )  (4) 
IO 

2 
lo V I ' )  

2 

where the U = f preserve the bosonic signs, being opposite for hopping to the two 
distinct long diagonal sites. Now the bt are fermionic and f t  are new operators which 
create the state where both holes are on the short diagonaf sites. This description is 
an ezact representation of the corresponding hard-core boson problem. 

I t  is now only a short step to a pairing theory for the fermionic problem. If 
we assume that the states where two holes are on the same short diagonal are only 
virtually excited, which is certainly true at low doping, then we can eliminate the fj 
to leading order producing 

where the final term is an energy-dependent interaction, depending on the relevant 
single-particle energy e: H\V = 4. For the low energy excitation 6 is negative; E N  -3t 
for the linear chain for example. The energy dependence is only truly relevant when 
the pairs of short diagonal sites become significantly occupied in the ground state. We 
are only interested in low doping concentrations where 3t2/4c is negative. 

The final term in equation (5) is the expected attraction between fermions re- 
sulting from their bybridization into the extra degree of freedom associated with the 
bosonic state. This final description leads directly to a weak-coupling BCS pairing 
theory. The fact that  the particles are spinless fermions ensures that the pairs must 
be antisymmetric in reciprocal space and that the gap must also be antisymmetric. 
This antisymmetry is not just a minor quirk of the model but is in fact serious cause 
for concern. There is no pairing at the zone centre and the gap grows linearly with 
wavevector. This is physically reasonable since only when the fermionic statistics plays 
a role, namely when there is a non-trivial Fermi surface, can the bosonic state be used 
to gain some extra energy. This situation, away from the zone centre, is also precisely 
where hybridization into the other spin state, the e,' state, is allowed. The effects that  
we have so far excluded in our approximation are equally as Iarge as the effects that we 
have included. In order to truly justify our assertion that the system superconducts, 
we must tackle the single-particle energies exactly and show that there is still some 
extra hybridization associated with the twc-particle states. 

3.2. Weakly inferucting fermion description 

In this section we treat the description of equation (2) seriously. We impose fermionic 
statistics on the operators and deduce the form of the two-particle interactions. AI- 
though i t  might seem elementary to deduce the two-particle interactions, in fact it is 
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Figure 2.  Pictorial representations of the stat- described by our effective many- 
body descriptions. The hole are denoted by ‘h’, extra long diagonal spins are denoted 
by ‘t’, a singlet pair is denoted by a line with an encircled end and the antisymmetric 
bonding combination for a hole on a pair of short diagonal atom is denoted by %’. 
(a) Singlepartide states. 

not trivial. In figure 2 we depict a pictorial representation of the states represented by 
the operators in our analytic description. Not all states described by our new model 
have concrete representations in the original model, but all such unphysical states 
are non-bonding in our new model. The non-bonding combination for the model is 
&e: + &e;, + udj + d d ] ,  if we choose U and U’ for the hops to the long diagonal 
site connecting the two diamonds labelled by j and j’ respectively. If we once again 
restrict attention to spin configurations where two holes meet in a singlet diamond, 
then we can use 

for the two-particle interactions, which in conjunction with equation ( 2 )  yield a con- 
sistent description for the relevant states. We believe that the effective description is 
emcl for the states indicated in figure 2 a t  the two-particle level. The first term is 
purely repulsive and corresponds to the loss of motion between the two short diagonal 
sites when they are both occupied. The second term is the important term and yields 
the corrections due to the enhanced motion when a pair of holes are in a diamond with 
a singlet. It is important to realize that we have only included states where the two 
holes are in a singlet diamond. There are matrix elements promoting triplet diamonds 
too, but these states are not naturally included into our description although they will 
lead to further attraction between holes. The two-particle potential that we derive is 
more repulsive than that for the original system. 



Figure 2. ( b )  Twc-parlicle states. The combination (d! + &!)(d,- ea) I O )  is 
non-hcndint in our desdption and inelevant to the low energy erntallons. There 
is no obvious spin configuration companding to thk state. 

We now move on to a. determination of whether the tweparticle interactions 
are attractive ot repulsive. The first step is a diagonalization of the singlqarticle 
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h 

t<’ \h’ ‘+ 

Figure 2. ( c )  The state with a triplet diamond whidi is omitted from ourdescrip 
tion, together with the state included in our representation to which the omitted 
conliyration is coupled. 

interactions. In reciprocal space 

where c = cos P / 2  and s = sin P / 2 ,  which diagonalizes to yield: 

H =  ( - t ) C f r ( l + D k ) g ! g k + t C ~ ( D k - l ) h ~ h k - t C n h n k  (7b)  
k k k 

where Dk = J[9 + 1621 = ,/[I7 + 8 cosh]: 

( 7 4  

(74 

(7e) 

9 - l  t D k + l  at - - &J{@ - D k } g k -  &J{D:+ Dk}ht* 

2&c 1 h!+  si  
” J{D; - Dk}”” ’ J(4 + D k }  J[1+ 2c2lnL 

J[ l  + 2c2] ”“ ek = t 2is t 2is h! + &c 

J{D: - Dk}’* + J{D: + Dk}  
The next step is to find the two-particle potential restricted to the lowest lying branch, 
by substituting equations (7c)-(7e) into equation (6). 

k’; P,P’)6k+k,+p+p’ ( 8 4  1 t t  = gkgktg-png-p 
kk‘pp’ 

with 
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where the interaction has been partially symmetrized and we have evaluated the in- 
teraction for the most important pairs which have zero total momentum. The require- 
ment that spinless fermion pairs have antisymmetric reciprocal space wavefunctions 
is manifested in the two factors sink and sinp. The interaction vanishes at the zone 
centre only exhibiting an interaction on states which are affected by Pauli exclusion. 

Unfortunately this interaction is always repulsive, although it is very small with a 
large cancellation between the two terms. 

Rather than pursue the inclusion of the states omitted from the model, in order 
to establish the validity of the phcnomenon we have elected to modify the model. By 
raising and lowering the relative size of the matrix elements we can both weaken the 
repulsion between the dj and e! fermions and increase the attraction by promoting 
a;,, in the ground state. 

The obvious extension 
t H, = (A - t’) c ( d j d j  + e j e j )  - - [ ( h d j  + aef)ajo t ~ ) ~ ( f i d ,  + mj)] (Sa) 

j J2 jo 

&- 1 H ,  = 2 t ’ x d j e f e j d j  - --t [dfefaj,(ej + udj) t (ef + ud])a~,,ejdj] (9b) 
i ’2 jo 

simply raises the energy of the short diagonal sites to A and reduces the hybridization 
across the short bonds to t’. There is no intrinsic change in behaviour, and we can 
readily find the equivalent results for this model: 

cF = h (A + t‘ - J[32 t2+  (A + t ’ ) ’ ] )  

(A - t’ - J[24t2 + (A - t ’ )? ] )  

( l o a )  

(10b)  

for the ferromagnetic ground state energy: 

6s = 
for the paramagnetic ground state energy which must be relatively stable. If the 
energies become reversed, then the Nagaoka saturated ferromagnet would be stabilized 
at the singleparticle level. 

The analagous calculation for the tweparticle interaction potential is straightfor- 
ward and yields: 

4 sin t sin p qrz, - r z ,  -p,p) = . [Gtf - ( 2 f i  - 3)(tbk + IDp + 2A - W ) ]  (D: - D J D ;  - Dp) 

It is fairly easy to show that the interaction becomes attractive near empty when the 
ferromagnetic and paramagnetic phases are near degeneracy. 

A simple example is to let A = 0 and t’ = 1 / 2 .  
Developing the pairing theory from this attractive interaction is no problem, pro- 

vided that the interaction is attraetive at the non-interacting Fermi surface. The 
characteristic energy scale is the hopping motn’z element and this clearly allows room 
temperature superconductivity in principle. 
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4. Conclusions 

In this article we have presented the first analytic attempt to show that charge motion 
in topologically frustrated systems can involve pairing correlations. For our contrived 
diamond geometries we have exhibited an attractive interaction between the charge 
carriers. The interpretation of the effect can follow two lines of reasoning: 

The first line points out that when two holes meet in a diamond, they usually meet 
when the other two spins are singlet. Locally they behave as hard-core spinless bosons 
in this diamond. Since two such bosons gain more kinetic energy than two equivalent 
fermions this behaviour constitutes an attraction for the particles, when considered as 
fermions. Equivalently we can say that nodes in the spin wavefunction can conspire 
with the fermionic minus sign to convert fermions into bosons and allow the spinless 
charge carriers in a strong-coupling paramagnet to exhibit bosonic properties. Hard- 
core bosons condense [ll]. We have previously presented just such an explanation for 
perovskite superconductivity [12]. 

The second line of reasoning is based solely on an interpretation of the effects of 
topological frustration on charge motion in strong-coupling systems. First, charge 
motion drives the system into a strong-coupling paramagnet. Second, even in the 
paramagnetic phase, the particle motion is usually still restricted, with some kinetic 
energy lost to motion around loops with unhelpful spin configurations. When parti- 
cles approach each other one particle can locally unfrustrate the connectivity for the 
other leading to a local gain in kinetic energy. For our particular example the loss in 
kinetic energy can be traced to the extra spins on the long diagonal sites, which stop 
particles from always circling triangles with local singlet correlations. Extra charge 
carriers replace these problem spins and when two holes approach each other there 
are no remaining spins to cause problems, only singlets. We have previously pointed 
out that the natural strong-coupling limit of the tight binding model of perovskite 
superconductors is uigorously frustrated [13]. 

These two arguments are not independent and may just be two ways of under- 
standing one phenomenon. 

In this article we have studied the t-model and have used topological frustration to 
stabilize a strong-coupling paramagnet. There is no requirement for this and we could 
have used the t-J model and allowed the Heisenberg contribution to destabilize the 
Nagaoka ferromagnetism, but simultaneously kept the Heisenberg interaction weak 
enough not to stabilize the Heisenberg ground state. This line of argument explains 
the experimental phase diagram quite well. N6el order is observed in the insulating 
phase. As holes are doped into the material the antiferromagnetism is lost as the 
charge motion starts to dominate. The resulting paramagnetic phase still has short 
range Ndel correlations, ensuring only a small loss in Heisenberg energy. 

The critical geometric consideration was the s p a r e  and not the triangle. The 
attraction was caused by enhanced motion in the presence of a singlet, and to get 
two holes and a singlet we need four sites. The triangles are there only to promote 
strong-coupling paramagnetism. A similar study of the sawtooth geometry [4] yields 
paramagnetism but no pairing. 

We are not claiming that the onedimensional chain is a superconductor, since 
it is well known that fluctuations in one dimension are anomalously large. The cal- 
culations are a simple pilot for higher dimensional analogues. In practice, provided 
that the long diagonal spins are all parallel, the description of equation (9) is valid in 
higher dimensions with fermionic operators. The pairing effect is stronger in higher 
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dimensions since the probability that the holes reside on the long diagonal sites is in- 
creased. Indeed, for the three-dimensional simple cubic arrangement of long diagonal 
atoms, even the unmodified Eamiltonian yields an attraction between the holes. 

We do not believe that all the long diagonal spins will remain parallel in the 
true ground state in any dimension. There is much more energy to be made from 
paramagnetism around the larger loops which further ‘bosonize’ the charge carriers. 

We believe that the physical mechanism presented in this article can be pressed into 
service as an explanation for perovskite superconductivity, The two basic requirements 
of topological frustration and bosonic behaviour of pairs around the smallest loop are 
certainly true. 
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